SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lawoyin S, Fei DY, Bai O, Liu X. Int. J. Veh. Safety 2015; 8(2): 165-179.

Copyright

(Copyright © 2015, Inderscience Publishers)

DOI

10.1504/IJVS.2015.068691

PMID

unavailable

Abstract

Each year, thousands of accidents and fatalities occur when drowsy and fatigued drivers operate motor vehicles. Steering Wheel Movements (SWM) monitoring is an important and well documented method for the detection of drowsy driving. Although the SWM method has been shown to be effective, it has not yet been widely deployed on motor vehicles owing to cost prohibitions and the complexity of implementation. An earlier article by the same authors introduced and demonstrated the efficacy of an accelerometer-based method for SWM monitoring. The residual question from the previous study pertains to the detection accuracy of the method. The current study evaluates the accuracy of the method in detecting drowsiness using data from eight persons. Electrooculography (EOG), Electroencephalography (EEG) and the percent of eyelid closures (PERCLOS) were used to label drowsy states for training Support Vector Machines (SVM) and Probabilistic Neural Networks (PNN).

RESULTS show that using solely accelerometer data accurately classifies driver drowsiness (80.65%). The high accuracy demonstrates that accelerometers can be a simple, non-obtrusive and cost-effective method to help proliferate the practical deployment of individual drowsy detection.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print