SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Schuijbroek J, Hampshire RC, van Hoeve WJ. Eur. J. Oper. Res. 2017; 257(3): 992-1004.

Copyright

(Copyright © 2017, Elsevier Publishing)

DOI

10.1016/j.ejor.2016.08.029

PMID

unavailable

Abstract

Bike sharing systems have been installed in many cities around the world and are increasing in popularity. A major operational cost driver in these systems is rebalancing the bikes over time such that the appropriate number of bikes and open docks are available to users. We combine two aspects that have previously been handled separately in the literature: determining service level requirements at each bike sharing station, and designing (near-)optimal vehicle routes to rebalance the inventory. Since finding provably optimal solutions is practically intractable, we propose a new cluster-first route-second heuristic, in which a polynomial-size Clustering Problem simultaneously considers the service level feasibility and approximate routing costs. Extensive computational results on real-world data from Hubway (Boston, MA) and Capital Bikeshare (Washington, DC) are provided, which show that our heuristic outperforms a pure mixed-integer programming formulation and a constraint programming approach. © 2016 Elsevier Publishing.

KEYWORDS: Bicycles; Bicyclists; Bicycling


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print