SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kim J, Lee S, Lee S. Transportmetrica B: Transp. Dyn. 2017; 5(4): 385-401.

Copyright

(Copyright © 2017, Hong Kong Society for Transportation Studies, Publisher Informa - Taylor and Francis Group)

DOI

10.1080/21680566.2016.1147002

PMID

unavailable

Abstract

Minimising the damage caused by natural disasters such as tsunamis in vulnerable coastal areas requires the development of an emergency action plan. An evacuation plan can reduce the damaging impact of an unexpected tsunami. One of the most important factors in developing an action plan is a guideline for choosing proper evacuation routes in order to minimise loss of life and property. In this study, an evacuation network is designed to develop an evacuation plan based on a hierarchical network design problem used in communication networks, public transport, and social organisation network designs. Experimental analyses have been carried out in order to find effective evacuation plans at Haeundae Beach, Busan, Korea, using multi-agent transportation simulation (MATSim). In order to design an effective hierarchical evacuation network, a hierarchical evacuation network design is developed using the concepts of hub location, clustering, and network design. Further, we consider contraflow in the evacuation network, as well as determination of corridor lines by the minimum distance rule, maximal flow rule, maximum accessible rule, and minimum travel time rule. As a result of running each scenario using MATSim, a criterion for establishing the corridor line is evaluated. An optimal evacuation route is found to minimise overcrowded queues of evacuees, when the total evacuation time from the area of the tsunami is approximately 3 hours and 30 minutes.


Language: en

Keywords

clustering; evacuation route choice; evacuation time; hierarchical network design; multi-agent simulation; Word

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print