SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Albousefi AA, Ying H, Filev D, Syed F, Prakah-Asante KO, Tseng F, Yang HH. J. Intell. Transp. Syst. 2017; 21(1): 41-51.

Copyright

(Copyright © 2017, Informa - Taylor and Francis Group)

DOI

10.1080/15472450.2016.1196141

PMID

unavailable

Abstract

Advanced driver assistance systems, such as unintentional lane departure warning systems, have recently drawn much attention and efforts. In this study, we explored utilizing the nonlinear binary support vector machine (SVM) technique to predict unintentional lane departure, which is innovative, as the SVM methodology has not previously been attempted for this purpose in the literature. Furthermore, we developed a two-stage training scheme to improve SVM's prediction performance in terms of minimization of the number of false positive prediction errors. Experiment data generated by VIRTTEX, a hydraulically powered, 6-degrees-of-freedom moving base driving simulator at Ford Motor Company, were used. All the vehicle variables were sampled at 50 Hz and there were 16 drowsy drivers (about 3 hours of driving per subject) and six control drivers (approximately 20 minutes f driving each). In total, 3,508 unintentional lane departures occurred for the drowsy drivers and 23 for the control drivers. Our study involving these 22 drivers with a total of more than 7.5 million prediction decisions demonstrates that (a) excellent SVM prediction performance, measured by numbers of false positives (i.e., falsely predicted lane departures) and false negatives (i.e., lane departures failed to be predicted), was achieved when the prediction horizon was 0.6 seconds or less, (b) lateral position and lateral velocity worked the best as SVM input variables among the nine variable sets that we explored, and (c) the radial basis function performed the best as the SVM kernel function.


Language: en

Keywords

prediction; support vector machines; unintentional lane departure

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print