SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Qiu X, Xi T, Sun D, Zhang E, Li C, Peng Y, Wei J, Wang G. Fire Technol. 2018; 54(5): 1249-1263.

Copyright

(Copyright © 2018, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10694-018-0727-x

PMID

unavailable

Abstract

Fire poses a significant risk to the safety, health, and property of people around the world. However, traditional ''point sensor'' fire detection techniques for indoor buildings based on air particles, air temperatures, and smoke have a low sensitivity, long response time, and poor stability. Therefore, video-based fire detection has become a particularly efficient and important method for detecting the early signs of a fire. Due to image blur, low illumination, flame-like interference and other factors, there is a certain error rate of fire recognition using video flame recognition methods. According to our previous study of a multi-feature flame recognition algorithm, a novel flame recognition algorithm based on free radical emission spectroscopy during combustion is investigated in this paper. First, multiple features are extracted from the video images by employing our proposed processing scheme. Then, the features are post-processed by a temporal smoothing algorithm to eliminate the error recognition rate, which is caused by the similar characteristics of objects between flame-like and real flame areas. In the temporal smoothing experiments, the proposed method achieves the true positive rates of 0.965 and 0.937 for butane flames and forest fire, respectively. Additionally, the spectral signals of OH, CH, C2 and other free radicals in the combustion objects were acquired by the spectrometer. The vibrational temperature and rotational temperature are calculated after identification of the A2Δ → X2Π transition of the CH (410-440 nm). The flames-like are completely rejected by the proposed method in the validation experiment. In the subsequent butane combustion experiment, the vibrational temperature of the butane was 4896 K, and the rotational temperature was 2290 K. The experimental results show that real fires can be precisely recognized and that the combustion temperature can be determined from the CH emission spectroscopy. This novel method provides a new viewpoint for fire detection and recognition.


Language: en

Keywords

CH free radicals; Combustion temperature; Emission spectroscopy; Flame recognition; Temporal smoothing

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print