SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

McFarlane DC, Doig AK, Agutter JA, Mercurio JL, Mittu R, Brewer LM, Syroid ND. J. Def. Model. Simul. Appl. Methodol. Technol. 2017; 14(4): 371-388.

Copyright

(Copyright © 2017, Society for Modeling and Simulation International, Publisher SAGE Publishing)

DOI

10.1177/1548512916667246

PMID

unavailable

Abstract

Modern sensors for health surveillance generate high volumes and rates of data that currently overwhelm operational decision-makers. These data are collected with the intention of enabling front-line clinicians to make effective clinical judgments. Ironically, prior human-systems integration (HSI) studies show that the flood of data degrades rather than aids decision-making performance. Health surveillance operations can focus on aggregate changes to population health or on the status of individual people. In the case of clinical monitoring, medical device alarms currently create an information overload situation for front-line clinical workers, such as hospital nurses. Consequently, alarms are often missed or ignored, and an impending patient adverse event may not be recognized in time to prevent crisis. One innovation used to improve decision making in areas of data-rich environments is the Human Alerting and Interruption Logistics (HAIL) technology, which was originally sponsored by the US Office of Naval Research. HAIL delivers metacognitive HSI services that empower end-users to quickly triage interruptions and dynamically manage their multitasking. HAIL informed our development of an experimental prototype that provides a set of context-enabled alarm notification services (without automated alarm filtering) to support users' metacognition for information triage. This application is called HAIL Clinical Alarm Triage (HAIL-CAT) and was designed and implemented on a smartwatch to support the mobile multitasking of hospital nurses. An empirical study was conducted in a 20-bed virtual hospital with high-fidelity patient simulators. Four teams of four registered nurses (16 in total) participated in a 180-minute simulated patient care scenario. Each nurse was assigned responsibility to care for five simulated patients and high rates of simulated health surveillance data were available from patient monitors, infusion pumps, and a call light system. Thirty alarms per nurse were generated in each 90-minute segment of the data collection sessions, only three of which were clinically important alarms. The within-subjects experimental design included a treatment condition where the nurses used HAIL-CAT on a smartwatch to triage and manage alarms and a control condition without the smartwatch. The results show that, when using the smartwatch, nurses responded three times faster to clinically important and actionable alarms. An analysis of nurse performance also shows no negative effects on their other duties. Subjective results show favorable opinions about utility, usability, training requirement, and adoptability. These positive findings suggest the potential for the HAIL HSI system to be transferrable to the domain of health surveillance to achieve the currently unrealized potential utility of high-volume data.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print