SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sun B, Xu YL, Wang FY, Li Z, Zhu Q. Struct. Infrastruct. Eng. 2019; 15(4): 524-538.

Copyright

(Copyright © 2019, Informa - Taylor and Francis Group)

DOI

10.1080/15732479.2018.1562478

PMID

unavailable

Abstract

Fatigue damage prognosis for long-span steel bridges is of the utmost importance in bridge maintenance and management. In this study, a multi-scale fatigue damage prognosis algorithm is developed to calculate the trans-scale fatigue damage accumulation of newly-built long-span steel bridges under vehicle loading. The necessity and procedure of establishing a multi-scale finite element (FE) model of a newly-built long-span bridge for fatigue damage prognosis are first introduced. The future vehicle loading on the bridge is forecasted using the recorded weigh-in-motion (WIM) data and the agent-based traffic flow micro-simulation method. Then, the multi-scale fatigue damage prognosis algorithm is developed based on the multi-scale FE model and using the future vehicle loading. Finally, the proposed algorithm is applied to a newly-built long-span cable-stayed bridge for the time period from 2010 to 2020. The results show that the macro-scale fatigue damage accumulation and micro-scale short crack evolution of the critical components of the bridge can be simultaneously predicted and visualized. The proposed algorithm can be used as a numerical tool for fatigue damage prognosis of steel bridges where (or near where) WIM station is installed.


Language: en

Keywords

fatigue damage prognosis; micro-scale short cracks; multi-scale modelling; Newly-built long-span steel bridges; vehicle loading

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print