SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Łapka P, Furmański P. Fire Safety J. 2020; 111: e102916.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.firesaf.2019.102916

PMID

unavailable

Abstract

A numerical thermal model of the multi-layer protective clothing which accounts for the clothing movement is presented. The model includes heat conduction and thermal radiation in non-grey fabrics and air gaps, diffusive transfer of water vapour through fabrics and air gaps, sorption and desorption of water in fabric fibers, non-equilibrium bio-heat transfer in the skin and perspiration on the skin surface. Moreover, the model contains infiltration of fresh air into the widest air gap between the clothing and skin due to the clothing movement. In the simulations the clothing was for a short time exposed to the radiative heat flux emitted from the external source and cooled down in the surroundings with its movement accounted for. The results obtained are used to assess the influence of frequency and amplitude of variation of the thickness of the widest air gap on the skin temperature and burn degree, heat fluxes and vapour mass flow rate on the skin surface as well as relative humidity close to the skin. Numerical simulations reveal that an increase in the movement frequency and amplitude results in a decrease of average values of the majority of monitored quantities on the skin surface or close to it. The most visible decreases are observed for the average skin surface temperature and values of the Henriques-Moritz integral.


Language: en

Keywords

Clothing movement; Heat and moisture transfer; Non-grey medium; Numerical modeling; Protective garment; Thermal radiation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print