SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Han D, Yang X, Li G, Wang S, Wang Z, Zhao J. J. Adv. Transp. 2021; 2021: e4060740.

Copyright

(Copyright © 2021, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2021/4060740

PMID

unavailable

Abstract

In order to accurately analyse the impact of the rainy environment on the characteristics of highway traffic flow, a short-term traffic flow speed prediction model based on gate recurrent unit (GRU) and adaptive nonlinear inertia weight particle swarm optimization (APSO) was proposed. Firstly, the rainfall and highway traffic flow data were cleaned, and then they are matched according to the spatiotemporal relationship. Secondly, through the method of multivariate analysis of variance, the significance of the impact of potential factors on traffic flow speed was explored. Then, a GRU-based traffic flow speed prediction model in rainy environment is proposed, and the actual road sections under different rainfall scenarios were verified. After that, in view of the problem that the prediction accuracy of the GRU model was low in the continuous rainfall scenario, the APSO algorithm was used to optimize the parameters of the GRU network, and the APSO-GRU prediction model was constructed and verifications under the same road section and rain scene were carried out. The results show that the APSO-GRU model has significantly improved prediction stability than the GRU model and can better extract rainfall features during continuous rainfall, with an average prediction accuracy rate of 96.74%.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print