SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tang YM, Wang YH, Feng XY, Zou QS, Wang Q, Ding J, Shi RCJ, Wang X. Gait Posture 2021; 91: 205-211.

Copyright

(Copyright © 2021, Elsevier Publishing)

DOI

10.1016/j.gaitpost.2021.10.028

PMID

34740057

Abstract

BACKGROUND: Early detection of gait abnormalities is critical for preventing severe injuries in future falls. The timed up and go (TUG) test is a commonly used clinical gait screening test; however, the interpretation of its results is limited to the TUG total time. RESEARCH QUESTION: What is diagnostic accuracy of the low-cost, markerless, automated gait analyzer, with the aid of vision-based artificial intelligence technology, which extract gait spatiotemporal features and screen for abnormal walking patterns through video recordings of the TUG test? METHODS: Our dataset contained retrospective data from outpatients from the Department of Neurology or Rehabilitation of two tertiary hospitals in Shanghai. A panel of three expert neurologists specialized in movement disorders reviewed the gait performance in each TUG video, and labeled them separately, with the most commonly assigned label being used as the reference standard. The gait analyzer performed the AlphaPose algorithm to track the human joint position and calculated the spatiotemporal parameters by filtering and double-threshold signal detection. Gait spatiotemporal features and expert labels were input into machine learning models, and the accuracy of each model was tested with leave-one-out cross-validation (LOOCV).

RESULTS: A total of 284 participants were recruited. Among these, 100 were labeled as having abnormal gait performance by experts. The Naive Bayes classifier achieved the best performance with a full-data accuracy of 90.14% and a LOOCV accuracy of 89.08% for screening abnormal gait performance. SIGNIFICANCE: This study is the first to investigate the accuracy of a vision-based intelligent gait analyzer for screening abnormal clinical gait performance. By virtue of a pose estimation algorithm and machine learning models, our intelligent gait analyzer can detect abnormal walking patterns approximate to judgements made by experienced neurologists, which is expected to be a supplementary gait assessment protocol for basic-level doctors in the future.


Language: en

Keywords

Machine learning; Gait analysis; Pose estimation; Spatiotemporal parameters; Timed up and go test

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print