SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhao J, Sun G, Webster C. Environ. Plan. B Urban Anal. City Sci. 2021; 48(8): 2418-2435.

Copyright

(Copyright © 2021, SAGE Publishing)

DOI

10.1177/2399808320977871

PMID

unavailable

Abstract

Previous walkability scoring systems are all based on road networks, even though roads are not designed for pedestrians. To calculate an accurate walking score, we need pedestrian network data. This is especially the case in cities such as Hong Kong, where pedestrians are separated from vehicles by footbridges, underpasses or surface sidewalks. In this paper, we investigate why and how a three-dimensional pedestrian network makes a difference in walkability scoring, using Hong Kong as a case city. We developed a walkability scoring system based on networks and amenities, using multiple open-source programming platforms and languages. Separately, we calculated walkability scores (on a scale of 0-100) using the three-dimensional pedestrian network and road network of the city, comparing the differences between the two. A GIS raster analysis was conducted to extract walkability scoring differences from the two walkability surfaces, followed by a univariate linear model to examine how the scores were underestimated if without using the three-dimensional pedestrian network.

RESULTS show that streets were considered twice as walkable if rated by pedestrian network rather than road network. Walkability scores were 92% higher on average. The fitted model shows that the mean score underestimations were significantly different for different three-dimensional network elements. Surface sidewalks had an average underestimation of 33.75 (p < 0.001), footbridges and underground paths expanded the underestimations by 3.85 and 2.97 (both p < 0.001), respectively, and the linkages to footbridge and underground path enlarged the surface sidewalk underestimations by 2.68 and 4.92 (both p < 0.001). We suggest that walkability evaluation systems should be developed on pedestrian networks instead of road networks, especially for high-density cities.


Language: en

Keywords

high-density city; Hong Kong; pedestrian network; Walk Score; Walkability

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print