SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Huang M, Li S, Guo M, Han L, Guo RY. J. Adv. Transp. 2021; 2021: e5948971.

Copyright

(Copyright © 2021, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2021/5948971

PMID

unavailable

Abstract

The driving state of a self-driving vehicle represents an important component in the self-driving decision system. To ensure the safe and efficient driving state of a self-driving vehicle, the driving state of the self-driving vehicle needs to be evaluated quantitatively. In this paper, a driving state assessment method for the decision system of self-driving vehicles is proposed. First, a self-driving vehicle and surrounding vehicles are compared in terms of the overtaking frequency (OTF), and an OTF-based driving state evaluation algorithm is proposed considering the future driving efficiency. Next, a decision model based on the deep deterministic policy gradient (DDPG) algorithm and the proposed method is designed, and the driving state assessment method is integrated with the existing time-to-collision (TTC) and minimum safe distance. In addition, the reward function and multiple driving scenarios are designed so that the most efficient driving strategy at the current moment can be determined by optimal search under the condition of ensuring safety. Finally, the proposed decision model is verified by simulations in four three-lane highway scenarios. The simulation results show that the proposed decision model that integrates the self-driving vehicle driving state assessment method can help self-driving vehicles to drive safely and to maintain good maneuverability.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print