SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu CJ, Wang FK, Wang ZZ, Wang T, Jiang ZH. Sustainability (Basel) 2022; 14(9): e5193.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/su14095193

PMID

unavailable

Abstract

With rapidly developing communication and autonomous-driving technology, traffic flow on road networks will change from homogeneous human-driven vehicle (HDV) traffic flow to heterogeneous mixed traffic flow (MTF) comprising HDVs, autonomous vehicles (AVs), and connective-and-autonomous vehicles (CAVs). To understand the changes in the MTF of transportation engineering, we investigated the reserved capacity (RC) and right-of-way (ROW) reallocation policy that should be utilized under MTF scenarios. We established an MTF-based theoretical model to calculate the expressway segment capacity, theoretically analyzed the influence of the market penetration rate (MPR) on capacity and validated the model through numerical analysis. The results showed that the MPR of AVs and CAVs can enhance the MTF RC that is within 0-200% and that the platooning rate of CAVs positively influences the MTF RC. CAV popularization does not necessarily lead to a rapid increase in the transportation system efficiency when the MPR is <40% but significantly improves the efficiency of existing urban transportation facilities. When the MPR is >40%, the greatest enhancement is 4800 pcu/h/lane in terms of RC. A ROW reallocation policy that equips CAV-dedicated lanes according to the MPR of AVs and CAVs can enhance the capacity of expressway systems by 500 pcu/h/lane in terms of RC.


Language: en

Keywords

autonomous vehicle; connective-and-autonomous vehicles; expressway; reserved capacity; right-of-way reallocation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print