SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Heisig J, Olson E, Pebesma E. Fire (Basel) 2022; 5(1): e29.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/fire5010029

PMID

unavailable

Abstract

Climate change causes more extreme droughts and heat waves in Central Europe, affecting vegetative fuels and altering the local fire regime. Wildfire is projected to expand into the temperate zone, a region traditionally not concerned by fire. To mitigate this new threat, local forest management will require spatial fire hazard information. We present a holistic and comprehensible workflow for quantifying fuels and wildfire hazard through fire spread simulations. Surface and canopy fuels characteristics were sampled in a small managed temperate forest in Northern Germany. Custom fuel models were created for each dominant species (Pinus sylvestris, Fagus sylvatica, and Quercus rubra). Canopy cover, canopy height, and crown base height were directly derived from airborne LiDAR point clouds. Surface fuel types and crown bulk density (CBD) were predicted using random forest and ridge regression, respectively. Modeling was supported by 119 predictors extracted from LiDAR, Sentinel-1, and Sentinel-2 data. We simulated fire spread from random ignitions, considering eight environmental scenarios to calculate fire behavior and hazard. Fuel type classification scored an overall accuracy of 0.971 (Kappa = 0.967), whereas CBD regression performed notably weaker (RMSE = 0.069; R2 = 0.73). Higher fire hazard was identified for strong winds, low fuel moisture, and on slopes. Fires burned fastest and most frequently on slopes in large homogeneous pine stands. These should be the focus of preventive management actions.


Language: en

Keywords

fire behavior; fire hazard; fuels; LiDAR; modeling; remote sensing; Sentinel; simulation; wildfire

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print