SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kshirsagar PR, Manoharan H, Kasim S, Khan AI, Alam MM, Abushark YB, Abera W. Comput. Intell. Neurosci. 2022; 2022: e3211512.

Copyright

(Copyright © 2022, Hindawi Publishing)

DOI

10.1155/2022/3211512

PMID

35655498

PMCID

PMC9152392

Abstract

The power of wireless network sensor technologies has enabled the development of large-scale in-house monitoring systems. The sensor may play a big part in landslide forecasting where the sensor linked to the WLAN protocol can usefully map, detect, analyze, and predict landslide distant areas, etc. A wireless sensor network comprises autonomous sensors geographically dispersed for monitoring physical or environmental variables, comprising temperature, sound, pressure, etc. This remote management service contains a monitoring system with more information and helps the user grasp the problem and work hard when WSN is a catastrophic event tracking prospect. This paper illustrates the effectiveness of Wireless Sensor Networks (WSN) and artificial intelligence (AI) algorithms (i.e., Logistic Regression) for landslide monitoring in real-time. The WSN system monitors landslide causative factors such as precipitation, Earth moisture, pore-water-pressure (PWP), and motion in real-time. The problems associated with land life surveillance and the context generated by data are given to address these issues. The Wireless Sensors Network (WSN) and Artificial Intelligence (AI) give the option of monitoring fast landslides in real-time conditions. A proposed system in this paper shows real-time monitoring of landslides to preternaturally inform people through an alerting system to risky situations.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print