SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bargiotas I, Wang D, Mantilla J, Quijoux F, Moreau A, Vidal C, Barrois R, Nicolai A, Audiffren J, Labourdette C, Bertin-Hugaul F, Oudre L, Buffat S, Yelnik A, Ricard D, Vayatis N, Vidal PP. J. Neurol. 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s00415-022-11251-3

PMID

35817988

Abstract

Nowadays, it becomes of paramount societal importance to support many frail-prone groups in our society (elderly, patients with neurodegenerative diseases, etc.) to remain socially and physically active, maintain their quality of life, and avoid their loss of autonomy. Once older people enter the prefrail stage, they are already likely to experience falls whose consequences may accelerate the deterioration of their quality of life (injuries, fear of falling, reduction of physical activity). In that context, detecting frailty and high risk of fall at an early stage is the first line of defense against the detrimental consequences of fall. The second line of defense would be to develop original protocols to detect future fallers before any fall occur. This paper briefly summarizes the current advancements and perspectives that may arise from the combination of affordable and easy-to-use non-wearable systems (force platforms, 3D tracking motion systems), wearable systems (accelerometers, gyroscopes, inertial measurement units-IMUs) with appropriate machine learning analytics, as well as the efforts to address these challenges.


Language: en

Keywords

Machine learning; Frailty; Fall prediction; Force-platform; Longitudinal follow-up; Wearables

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print