SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang Y, Wang X. Comput. Intell. Neurosci. 2022; 2022: e4478978.

Copyright

(Copyright © 2022, Hindawi Publishing)

DOI

10.1155/2022/4478978

PMID

35928027

PMCID

PMC9345729

Abstract

With the development of computer hardware technology, the real-time problem of visual target tracking algorithm increasingly depends on hardware solutions. The core problem of visual target tracking is how to enhance the robustness of tracking algorithm to various complex background environments and various interference factors. Aiming at overcoming the defect that the traditional SLAM (simultaneous localization and map building) algorithm based on EKF (extended Kalman filter) has a slow repair speed for environmental interference, a Monocular SLAM_WOCPF (Monocular vision SLAM based on weight optimization combined particle filter) algorithm is proposed. The weights of all particles are reoptimized in the particle set and they are combined with the tendency of particles to degenerate and deplete. In this way, the chance of self replication of low weight particles is increased, thus increasing the diversity of the whole sample. Furthermore, the improved PF (particle filter) algorithm is applied to solve the problem of road sign observation of mobile robots, so as to expand its application scope. The results show that the mean road sign errors of the Monocular SLAM_WOCPF algorithm in two noise environments are 0.332/m and 0.441/m. The conclusion shows that the Monocular SLAM_WOCPF road sign observation method proposed in this paper can effectively improve the matching success rate of visual road signs and improve the observation quality.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print