SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Pan B, Chai H, Liu J, Shao Y, Liu S, Zhang R. J. Transp. Eng. A: Systems 2022; 148(10): e04022072.

Copyright

(Copyright © 2022, American Society of Civil Engineers)

DOI

10.1061/JTEPBS.0000684

PMID

unavailable

Abstract

Traditional two-lane or multilane roundabouts gradually become less efficient and safer to operate with increasing traffic volumes due to the weaving area. To mitigate this problem, several new types of roundabouts, including the turbo roundabout, have been gradually invented. Turbo roundabouts have been widely used, attributing to their unique lane separation facilities which eliminate the weaving area and improve the operational efficiency and safety of the roundabouts. However, the most common turbo roundabouts are single-lane or two-lane ones with insufficient capacity. Therefore, this paper focuses on the operational features' evaluation and forms selection of multilane turbo roundabouts using the entropy weight method (EWM). Based on the commonly utilized operational efficiency indicators, three additional indicators are selected to ensure the results' accuracy. The EWM is innovatively used to calculate the weights of adopted indicators and achieve a comprehensive evaluation of different roundabouts under various traffic scenarios. Furthermore, the operational features of different roundabouts are simulated and analyzed in Verkehr in Staedten Simulation (VISSIM). The final results demonstrate the EWM's utility in selecting optimal solutions. The spiral turbo roundabout showed the worst operational efficiency. The conventional form roundabout is proven suitable for small traffic volumes, whereas the rotor turbo roundabout performs better under large traffic volumes. In addition, a modified rotor turbo roundabout is presented, and the final results place its operational efficiency between those of the conventional form and the rotor. The turbo roundabouts achieve the most significant improvement in delays and the number of stops, potentially improving these aspects by more than 50%.


Language: en

Keywords

Entropy weight method (EWM); Operational features; Traditional multilane roundabouts; Turbo roundabouts; Verkehr in Staedten Simulation (VISSIM)

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print