SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li ML, Sun GB, Yu JX. Entropy (Basel) 2023; 25(2): e381.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/e25020381

PMID

36832747

Abstract

Advanced object detection methods always face high algorithmic complexity or low accuracy when used in pedestrian target detection for the autonomous driving system. This paper proposes a lightweight pedestrian detection approach called the YOLOv5s-G2 network to address these issues. We apply Ghost and GhostC3 modules in the YOLOv5s-G2 network to minimize computational cost during feature extraction while keeping the network's capability of extracting features intact. The YOLOv5s-G2 network improves feature extraction accuracy by incorporating the Global Attention Mechanism (GAM) module. This application can extract relevant information for pedestrian target identification tasks and suppress irrelevant information, improving the unidentified problem of occluded and small targets by replacing the GIoU loss function used in the bounding box regression with the α-CIoU loss function. The YOLOv5s-G2 network is evaluated on the WiderPerson dataset to ensure its efficacy. Our proposed YOLOv5s-G2 network offers a 1.0% increase in detection accuracy and a 13.2% decrease in Floating Point Operations (FLOPs) compared to the existing YOLOv5s network. As a result, the YOLOv5s-G2 network is preferable for pedestrian identification as it is both more lightweight and more accurate.


Language: en

Keywords

Ghost modules; global attention mechanism; lightweight model; loss function; pedestrian detection

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print