SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xiao C, Luo Z. Entropy (Basel) 2023; 25(2): e380.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/e25020380

PMID

36832746

Abstract

Recently, advances in detection and re-identification techniques have significantly boosted tracking-by-detection-based multi-pedestrian tracking (MPT) methods and made MPT a great success in most easy scenes. Several very recent works point out that the two-step scheme of first detection and then tracking is problematic and propose using the bounding box regression head of an object detector to realize data association. In this tracking-by-regression paradigm, the regressor directly predicts each pedestrian's location in the current frame according to its previous position. However, when the scene is crowded and pedestrians are close to each other, the small and partially occluded targets are easily missed. In this paper, we follow this pattern and design a hierarchical association strategy to obtain better performance in crowded scenes. To be specific, at the first association, the regressor is used to estimate the positions of obvious pedestrians. At the second association, we employ a history-aware mask to filter out the already occupied regions implicitly and look carefully at the remaining regions to find out the ignored pedestrians during the first association. We integrate the hierarchical association in a learning framework and directly infer the occluded and small pedestrians in an end-to-end way. We conduct extensive pedestrian tracking experiments on three public pedestrian tracking benchmarks from less crowded to crowded scenes, demonstrating the proposed strategy's effectiveness in crowded scenes.


Language: en

Keywords

hierarchical association; MOT challenge; multi-pedestrian tracking; spatial–temporal information

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print