SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yu X, Kong D, He X, Ping P. Fire (Basel) 2023; 6(5): e181.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/fire6050181

PMID

unavailable

Abstract

Hydrogen-gasoline hybrid refueling stations can minimize construction and management costs and save land resources and are gradually becoming one of the primary modes for hydrogen refueling stations. However, catastrophic consequences may be caused as both hydrogen and gasoline are flammable and explosive. It is crucial to perform an effective risk assessment to prevent fire and explosion accidents at hybrid refueling stations. This study conducted a risk assessment of the refueling area of a hydrogen-gasoline hybrid refueling station based on the improved Accident Risk Assessment Method for Industrial Systems (ARAMIS). An improved probabilistic failure model was used to make ARAMIS more applicable to hydrogen infrastructure. Additionally, the accident consequences, i.e., jet fires and explosions, were simulated using Computational Fluid Dynamics (CFD) methods replacing the traditional empirical model. The results showed that the risk levels at the station house and the road near the refueling area were 5.80 × 10−5 and 3.37 × 10−4, respectively, and both were within the acceptable range. Furthermore, the hydrogen dispenser leaked and caused a jet fire, and the flame ignited the exposed gasoline causing a secondary accident, considered the most hazardous accident scenario. A case study was conducted to demonstrate the practicability of the methodology. This method is believed to provide trustworthy decisions for establishing safe distances from dispensers and optimizing the arrangement of the refueling area.


Language: en

Keywords

ARAMIS; CFD; dispenser; domino effect; fire and explosion; hydrogen fueling station; risk assessment

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print