SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang Y, Wei H, Hu B, Lv C. SAE Int. J. Veh. Dyn. Stab. NVH 2023; 7(3): 10-07-03-0019.

Copyright

(Copyright © 2023, Society of Automotive Engineers)

DOI

10.4271/10-07-03-0019

PMID

unavailable

Abstract

The vehicle dynamic state is essential for stability control and decision-making of intelligent vehicles. However, these states cannot usually be measured directly and need to be obtained indirectly using additional estimation algorithms. Unfortunately, most of the existing estimation methods ignore the effect of data loss on estimation accuracy. Furthermore, high-order filters have been proven that can significantly improve estimation performance. Therefore, a second-order fault-tolerant extended Kalman filter (SOFTEKF) is designed to predict the vehicle state in the case of data loss. The loss of sensor data is described by a random discrete distribution. Then, an estimator of minimum estimation error covariance is derived based on the extended Kalman filter (EKF) framework. Finally, experimental tests demonstrate that the SOFTEKF can reduce the effect of data loss and improve estimation accuracy by at least 10.6% compared to the traditional EKF and fault-tolerant EKF.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print