SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cicek E, Akin M, Uysal F, Topcu Aytas RM. Transp. Lett. 2023; 15(9): 1043-1054.

Copyright

(Copyright © 2023, Maney Publishing, Publisher Informa - Taylor and Francis Group)

DOI

10.1080/19427867.2023.2214758

PMID

unavailable

Abstract

Traffic accidents are still the main cause of fatalities, injuries and significant delays in highways. Understanding the accident contributing factor is imperative to increase safety in a traffic network. Recent research confirms that predictive modeling is an important tool to comprehend accident contributing factors. However, little effort has been put forward to explain complex machine learning models and their feature effects in accident prediction models. Thus, this study aims to build predictive models based on different machine learning methods and tries to explain the most contributing factors by using Shapley values which was developed based on game theory. Decision Trees, Neural Networks with Multilayer Perceptron (MLP), Support Vector Classifier, Case-Based Reasoning and Naive Bayes Classifier were used to predict the injury severity in accidents. Belt usage, alcohol consumption and speed violations were found as the most effective features and MLP gave the highest accuracy among all the applied predictive models.


Language: en

Keywords

Accident prediction; case-based reasoning; decision trees; explainable machine learning; Naive Bayes classifier; neural network; shapley numbers; support vector classifier

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print