SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu L, Cui Z, Ke R, Wang Y. J. Transp. Eng. A: Systems 2023; 149(10): e04023102.

Copyright

(Copyright © 2023, American Society of Civil Engineers)

DOI

10.1061/JTEPBS.TEENG-7868

PMID

unavailable

Abstract

The postpandemic period has seen a significant increase in traffic volume on freeways, necessitating the implementation of advanced traffic management systems, such as lane-level freeway tolling systems, to predict traffic patterns and alleviate congestion. Although deep learning models have proven effective in predicting traffic states, little research has focused on lane-level traffic prediction, which is crucial for emerging intelligent transportation applications. To address this gap, this study develops a lane-level road segment graph and proposes a lane-based road network traffic volume prediction model, GCN-LSTM, that combines graph convolution network (GCN) and long short-term memory (LSTM). The proposed model employs different graph Laplacian matrices, and the performance of these corresponding derived models is compared with that of existing traffic prediction models. The proposed model is evaluated using traffic volume data collected from inductive loop detectors installed on freeways in the Seattle area, including both high-occupancy toll lanes and general-purpose lanes. The results demonstrate that the GCN-LSTM model with the combinatorial Laplacian matrix outperforms other models. Additionally, the model's prediction performance remains consistent when using input data with various temporal ranges. Furthermore, excluding high-occupancy toll lane data from the dataset improves the prediction accuracy, highlighting the importance of developing specialized models for lane-level traffic prediction tasks.


Language: en

Keywords

Graph neural network; Lane-level traffic volume forecasting; Lane-segment graph; Long short-term memory (LSTM) network

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print