SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ma X, Lu J, Wong YD. J. Adv. Transp. 2023; 2023: e2780961.

Copyright

(Copyright © 2023, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2023/2780961

PMID

unavailable

Abstract

Driving behavior has frequently been overlooked in previous road traffic crash research. Hereby, abnormal (extreme) driving behavior data transmitted by the onboard navigation systems were collected for vehicles involved in traffic crashes, including sharp-lane-change, sharp-acceleration, and sudden-braking behaviors. Using these data in conjunction with expressway crash records, multiple classification learners were trained to establish a behavior-driven risk prediction model. To further investigate the influence of driving behavior on crash risk, partial dependence plots (PDPs) were applied. Regression analyses indicate that models have a stronger effect when derivative features such as frequency of specific deviant behavior, speed, and acceleration in the behavior process are included. The behavioral RUSBoost model surpasses other models, achieving an AUC prediction metric of 0.782 and outperforming traditional traffic-flow-driven machine learning models. PDP analysis demonstrates that the sudden-braking behavior is the leading contributory factor of expressway crashes, particularly when the acceleration exceeds 0.5 G. This study confirms the potential of predicting crash risks through augmenting behavior data from navigation software; the findings lay a foundation for countermeasures.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print