SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li Q, Ou B, Liang Y, Wang Y, Yang X, Li L. J. Adv. Transp. 2023; 2023: e1286977.

Copyright

(Copyright © 2023, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2023/1286977

PMID

unavailable

Abstract

Vehicle trajectory prediction can provide important support for intelligent transportation systems in areas such as autonomous driving, traffic control, and traffic flow optimization. Predicting vehicle trajectories is an extremely challenging task that not only depends on the vehicle's historical trajectory but also on the dynamic and complex social-temporal relationships of the surrounding traffic network. The trajectory of the target vehicle is influenced by surrounding vehicles. However, existing methods have shortcomings in considering both time dependency and interactive dependency between vehicles or insufficient consideration of the impact of surrounding vehicles. To address this issue, we propose a hybrid deep learning model based on a temporal convolutional network (TCN) that considers local and global interactions between vehicles. Specifically, we use a social convolutional pooling layer to capture local interaction features between vehicles and a multihead self-attention layer to capture global interaction features between vehicles. Finally, we combine these two features using an encoder-decoder structure to predict vehicle trajectories. Through experiments on the Next-Generation Simulation (NGSIM) public dataset and ablation experiments, we validate the effectiveness of our model.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print