SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Chen W, He Z, Zhu Y, Wu Z. J. Adv. Transp. 2023; 2023: e6751908.

Copyright

(Copyright © 2023, Institute for Transportation, Publisher John Wiley and Sons)

DOI

10.1155/2023/6751908

PMID

unavailable

Abstract

Signal-vehicle coordinated control holds substantial promise for enhancing urban transportation efficiency. However, its development faces notable challenges: (1) most existing studies have been conducted based on the assumption of perfect communication conditions. This assumption overlooks the significant impact of vehicle-to-infrastructure (V2I) communication quality on control performance, which leads to poor applicability in practice. (2) The evaluation of roadside unit (RSU) deployment for optimizing signal-vehicle control has not been well studied. Hence, the modeling of signal-vehicle coordination control and RSU deployment evaluation under V2I environment are studied in this paper. First, we introduce a communication model that characterizes the imperfections in communication between RSUs and connected vehicles (CVs). Second, we propose a model for signal-vehicle coordination control within this connected environment. This model integrates strategies from both signal control optimization and the speed optimization of CV platoons. Finally, to assess the impact of the RSU deployment parameters on the performance of signal-vehicle coordination control, we introduce a systematic evaluation method. The reduction in vehicle delays is introduced as the evaluation indicator for control performance. Six other indicators--the number of vehicles in the RSU communication domain, connectivity probability between the CV and RSU, number of vehicles whose speeds are successfully optimized, number of speed adjustments, green extension time, and overlap rate of the communication domains of multiple RSUs--are introduced as the observation indicators. The simulation experiments verify the effectiveness of the proposed model in implementing signal-vehicle coordination control under imperfect communication and environments in low-traffic, medium-traffic, and high-traffic scenarios. Furthermore, these experiments show the quantitative impact of RSU deployment parameters (communication distance, command transmission cycle, installation position, and number of RSUs) on control performance.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print