SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Banagiri S, Meadows J, Lattimer BY. J. Fire Sci. 2023; 41(6): 241-268.

Copyright

(Copyright © 2023, SAGE Publishing)

DOI

10.1177/07349041231195847

PMID

unavailable

Abstract

Firebrand burning is a complex phenomenon that is influenced by several parameters which are difficult to fully explore experimentally. Computational fluid dynamics models capable of predicting local quantities are essential for accurate prediction of char oxidation in firebrands. This article presents a computational fluid dynamics model to estimate firebrand mass loss, diameter change, and surface temperature during char oxidation. The model was validated using previously conducted wind tunnel experiments. These experiments were conducted for firebrands of two different aspect ratios, which were arranged in three different configurations (single, horizontal array, and vertical array), and for four different wind speeds (0.5, 1, 1.5, and 2 m/s). The computational fluid dynamics results were compared with a previous 1 D model. In all the test cases, the computational fluid dynamics model predicted the physical phenomena with significantly improved accuracy compared to a 1 D model. The char oxidation model presented in this article can be coupled with other models to study firebrand generation and trajectory, biomass pyrolysis, fluidized bed reactors, and coal combustion.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print