SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Numazawa M, Takahashi M, Nagaoka M, Handa W, Yamashita K. J. Steroid Biochem. Mol. Biol. 2007; 107(3-5): 220-227.

Copyright

(Copyright © 2007, Elsevier Publishing)

DOI

10.1016/j.jsbmb.2007.03.041

PMID

17651966

Abstract

Aromatase catalyzes the conversion of androstenedione (AD) to estrone through three sequential oxygenations of the 19-methyl group. 6-OxoAD (1) is one of the typical suicide substrates of aromatase, which is converted by aromatase to 6-oxoestrone through 19-alcohol (19-ol) and 19-aldehyde (19-al) intermediates 2 and 3. To study the deuterium isotope effect on the conversion of 19-ol 2 to 19-al 3 as well as the stereochemistry of the 19-hydrogen removal in this conversion, we initially synthesized [19,19-(2)H(2)] and [19S- or 19R-(2)H] 19-ols 2, starting from the corresponding deuterium-labeled 19-hydroxyAD derivatives. In incubation of non-labeled and [19,19-(2)H(2)]-labeled 19-ol 2 or that of their 1:1 mixture with human placental microsomes in the presence of NADPH under air, there was no significant deuterium-isotope effect on the production of the aromatized product 6-oxoestrone or on the conversion of 19-ol 2 to 19-al 3, based on gas chromatography-mass spectrometric analysis of the estrogen product or liquid chromatography-mass spectrometric (LC-MS) analysis of the deuterium contents of the product 19-al 3 and the recovered 19-ol 2. Moreover, in the incubations of [19S-(2)H] 19-ol 2 and its 19R isomer, LC-MS analysis of the product 3 demonstrated that the 19-pro-R hydrogen atom was stereospecifically removed in the conversion of 19-ol 2 to 19-al 3. These findings indicate that the 19-oxygenation of 19-ol 2 would proceed in the same mechanism as that involved in the AD aromatization.


Language: en

Keywords

Androstenes; Female; Humans; Isotopes; Magnetic Resonance Spectroscopy; Mass Spectrometry; Microsomes; Oxygen; Placenta; Stereoisomerism

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print