SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Sun F, Wang L, Gao T, Zhong Y, Ren K. Molecules 2024; 29(15).

Copyright

(Copyright © 2024, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/molecules29153708

PMID

39125111

PMCID

PMC11314537

Abstract

Rigid polyurethane foam (RPUF) is widely utilized in construction and rail transportation due to its lightweight properties and low thermal conductivity, contributing to energy conservation and emission reduction. However, the inherent flammability of RPUF presents significant challenges. Delaying the time to ignition and preventing flame spread post-combustion is crucial for ensuring sufficient evacuation time in the event of a fire. Based on this principle, this study explores the efficacy of using potassium salts as a catalyst to promote the self-cleavage of RPUF, generating substantial amounts of CO(2), thereby reducing the local oxygen concentration and delaying ignition. Additionally, the inclusion of a reactive flame retardant (DFD) facilitates the release of phosphorus-oxygen free radicals during combustion, disrupting the combustion chain reaction and thus mitigating flame propagation. Moreover, potassium salt-induced catalytic carbonization and phosphorus derivative cross-linking enhance the condensed phase flame retardancy. Consequently, the combined application of potassium salts and DFD increases the limiting oxygen index (LOI) and reduces both peak heat release rate (PHRR) and total heat release (THR). Importantly, the incorporation of these additives does not compromise the compressive strength or thermal insulation performance of RPUF. This integrated approach offers a new and effective strategy for the development of flame retardant RPUF.


Language: en

Keywords

catalytic self-cleavage; flame retardant; rigid polyurethane foam; thermal insulation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print