We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Carswell CM, Lio CH, Grant R, Klein MI, Clarke D, Seales WB, Strup S. Appl. Ergon. 2010; 42(1): 138-145.


Center for Visualization and Virtual Environments, University of Kentucky, Lexington, KY 40506, USA; Department of Psychology, University of Kentucky, Lexington, KY 40506, USA.


(Copyright © 2010, Elsevier Publishing)






INTRODUCTION: Subjective workload measures are usually administered in a visual-manual format, either electronically or by paper and pencil. However, vocal responses to spoken queries may sometimes be preferable, for example when experimental manipulations require continuous manual responding or when participants have certain sensory/motor impairments. In the present study, we evaluated the acceptability of the hands-free administration of two subjective workload questionnaires - the NASA Task Load Index (NASA-TLX) and the Multiple Resources Questionnaire (MRQ) - in a surgical training environment where manual responding is often constrained. METHOD: Sixty-four undergraduates performed fifteen 90-s trials of laparoscopic training tasks (five replications of 3 tasks - cannulation, ring transfer, and rope manipulation). Half of the participants provided workload ratings using a traditional paper-and-pencil version of the NASA-TLX and MRQ; the remainder used a vocal (hands-free) version of the questionnaires. A follow-up experiment extended the evaluation of the hands-free version to actual medical students in a Minimally Invasive Surgery (MIS) training facility. RESULTS: The NASA-TLX was scored in 2 ways - (1) the traditional procedure using participant-specific weights to combine its 6 subscales, and (2) a simplified procedure - the NASA Raw Task Load Index (NASA-RTLX) - using the unweighted mean of the subscale scores. Comparison of the scores obtained from the hands-free and written administration conditions yielded coefficients of equivalence of r=0.85 (NASA-TLX) and r=0.81 (NASA-RTLX). Equivalence estimates for the individual subscales ranged from r=0.78 ("mental demand") to r=0.31 ("effort"). Both administration formats and scoring methods were equally sensitive to task and repetition effects. For the MRQ, the coefficient of equivalence for the hands-free and written versions was r=0.96 when tested on undergraduates. However, the sensitivity of the hands-free MRQ to task demands (eta(partial)(2)=0.138) was substantially less than that for the written version (eta(partial)(2)=0.252). This potential shortcoming of the hands-free MRQ did not seem to generalize to medical students who showed robust task effects when using the hands-free MRQ (eta(partial)(2)=0.396). A detailed analysis of the MRQ subscales also revealed differences that may be attributable to a "spillover" effect in which participants' judgments about the demands of completing the questionnaires contaminated their judgments about the primary surgical training tasks. CONCLUSION: Vocal versions of the NASA-TLX are acceptable alternatives to standard written formats when researchers wish to obtain global workload estimates. However, care should be used when interpreting the individual subscales if the object is to make comparisons between studies or conditions that use different administration modalities. For the MRQ, the vocal version was less sensitive to experimental manipulations than its written counterpart; however, when medical students rather than undergraduates used the vocal version, the instrument's sensitivity increased well beyond that obtained with any other combination of administration modality and instrument in this study. Thus, the vocal version of the MRQ may be an acceptable workload assessment technique for selected populations, and it may even be a suitable substitute for the NASA-TLX.

Language: en


All SafetyLit records are available for automatic download to Zotero & Mendeley