We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Cullum HE, McGavigan C, Uttley CZ, Stroud MA, Warren DC. J. Forensic Sci. 2004; 49(4): 684-690.


Forensic Explosives Laboratory, Defence Science and Technology Laboratory, Fort Halstead, Sevenoaks, Kent, UK.


(Copyright © 2004, American Society for Testing and Materials, Publisher John Wiley and Sons)






This survey was carried out as a follow-up to a 1994 survey carried out by this laboratory (1) in order to determine the background levels of explosives traces in public places. The first survey concentrated on transport areas and police stations in and around London. This second study examines levels in four of the United Kingdom's major cities: Birmingham, Cardiff, Glasgow, and Manchester. Samples were taken at various transport sites and from hotels, private houses, private vehicles, and clothing. The survey showed that traces of the high explosives nitroglycerine (NG), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), and cyclotrimethylene trinitramine (RDX) are rare within the general public environment. Only one low-level trace of RDX was detected. NG, possibly associated with the use of firearms, was detected at low levels in two samples and 2,4-DNT was detected in a separate sample. No PETN was detected in any of the samples. The results of the survey indicate that it is unlikely that persons visiting public areas could become significantly contaminated with explosives. The analytical procedures employed would also have detected ethylene glycol dinitrate (EGDN) if present at levels greater than 2 ng, nitrobenzene (NB) if present at levels greater than 50 ng, mononitrotoluenes if present at levels greater than 50 ng, and the other common isomers of dinitrotoluene if these had been present at levels in excess of 10 ng. None of these were detected. The relatively high volatility of EGDN, NB, and the mononitrotoluenes would, however, cause traces of these compounds to disperse rapidly. A proportion of the samples (approximately 7%) were analyzed for the presence of HMX. No HMX was detected.


All SafetyLit records are available for automatic download to Zotero & Mendeley