SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Berry MJ, Koves TR, Benedetto JJ. Appl. Ergon. 2000; 31(5): 531-536.

Affiliation

Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC 27109-7868, USA. berry@wfu.edu

Copyright

(Copyright © 2000, Elsevier Publishing)

DOI

unavailable

PMID

11059467

Abstract

The purpose of this investigation was to examine the effects of bicycle mass, speed, and grade on oxygen consumption (VO2), heart rate (HR), and ratings of perceived exertion (RPE) during a simulated off-road riding paradigm. Nine adult subjects with mean +/- SD age, mass, and VO2 max of 26.1 +/- 5.6 years, 71.7 +/- 7.5 kg, 56.6 +/- 5.2 ml x kg(-1) x min(-1) respectively, were trained to ride a fully suspended Trek Y-22 mountain bike on a treadmill with a 3.8 cm bump affixed to the belt. Riders completed a maximum of nine separate trials encompassing three different bike masses (11.6, 12.6 and 13.6 kg), 3 speeds (2.7, 3.6 and 4.5 m x s(-1)), and 3 grades (0, 2.5, and 5%). Throughout a trial, bike mass and speed remained constant while riding grade was increased every 5 min. During simulated off-road riding on a fully suspended mountain bike, increases in speed and grade significantly increased VO2, heart rate, and RPE. Increases in bike mass had no significant effects on VO2, heart rate or RPE. In addition, speed and grade changes interacted to differentially affect VO2, heart rate, and RPE at all speeds and grades.

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print