We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Peitzsch EH, Hendrikx J, Fagre DB, Reardon B. Cold Reg. Sci. Technol. 2012; 78: 73-81.


(Copyright © 2012, Elsevier Publishing)






Wet slab and glide snow avalanches are dangerous and yet can be particularly difficult to predict. Wet slab and glide avalanches are presumably triggered by free water moving through the snowpack and the subsequent interaction with layer or ground interfaces, and typically occur in the spring during warming and subsequent melt periods. In Glacier National Park (GNP), Montana, both types of avalanches can occur in the same year and affect the spring opening operations of the Going-to-the-Sun Road (GTSR).

We investigated the timing of wet slab and glide avalanche occurrence along the GTSR from 2003 to 2011 using meteorological and snowpack data from two high-elevation weather stations, one SNOTEL site, and an avalanche database to characterize 55 wet slab and 182 glide avalanches. Daily wet slab and glide avalanche occurrence were combined to represent an avalanche day and were compared to non-avalanche days (no avalanche occurrence) for 60 variables (both direct and derived measurements) using a univariate analysis. A classification tree (CART) was then trained to capture the most important variables for examining specific meteorological and snowpack variables that contribute to these types of wet snow avalanches. The CART was 10-fold cross validated using the data for 2003-2010 seasons and resulted in overall predictive accuracy of 73%. We then used the statistically optimal CART as a predictive model for the spring avalanche season of 2011, which resulted in an overall predictive accuracy of 82% for both avalanche and non-avalanche days, and a predictive accuracy of 91% for avalanche days.

The results suggest that the role of air temperature and snowpack settlement appear to be the most important variables in wet slab and glide avalanche occurrence. When applied to the 2011 season, the results of the CART model are encouraging and they enhance our understanding of some of the required meteorological and snowpack conditions for wet slab and glide avalanche occurrence.

Language: en


All SafetyLit records are available for automatic download to Zotero & Mendeley