SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hendrickson J, Patterson KK, Inness EL, McIlroy WE, Mansfield A. Gait Posture 2014; 39(1): 177-181.

Affiliation

Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; Mobility Team, Toronto Rehabilitation Institute, Toronto, ON, Canada.

Copyright

(Copyright © 2014, Elsevier Publishing)

DOI

10.1016/j.gaitpost.2013.06.022

PMID

23877032

Abstract

Spatial and temporal gait asymmetry is common after stroke. Such asymmetric gait is inefficient, can contribute to instability and may lead to musculoskeletal injury. However, understanding of the determinants of such gait asymmetry remains incomplete. The current study is focused on revealing if there is a link between asymmetry during the control of standing balance and asymmetry during walking. This study involved review of data from 94 individuals with stroke referred to a gait and balance clinic. Participants completed three tests: (1) walking at their usual pace; (2) quiet standing; and (3) standing with maximal loading of the paretic side. A pressure sensitive mat recorded placement and timing of each footfall during walking. Standing tests were completed on two force plates to evaluate symmetry of weight bearing and contribution of each limb to balance control. Multiple regression was conducted to determine the relationships between symmetry during standing and swing time, stance time, and step length symmetry during walking. Symmetry of antero-posterior balance control and weight bearing were related to swing time and step length symmetry during walking. Weight-bearing symmetry, weight-bearing capacity, and symmetry of antero-posterior balance control were related to stance time symmetry. These associations were independent of underlying lower limb impairment. The results support the hypothesis that impaired ability of the paretic limb to control balance may contribute to gait asymmetry post-stroke. Such work suggests that rehabilitation strategies that increase the contribution of the paretic limb to standing balance control may increase symmetry of walking post-stroke.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print