We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Masse F, Gonzenbach R, Paraschiv-Ionescu A, Luft A, Aminian K. IEEE Trans. Neural Syst. Rehabil. Eng. 2016; 24(11): 1210-1217.


(Copyright © 2016, IEEE (Institute of Electrical and Electronics Engineers))






Sit-to-stand and Stand-to-sit transfers (STS) provide relevant information regarding the functional limitation of mobility-impaired patients. The characterization of STS pattern using a single trunk fixed inertial sensor has been proposed as an objective tool to assess changes in functional ability and balance due to disease. Despite significant research efforts, STS quantification remains challenging due to the high inter- and between- subject variability of this motion pattern. The present study aims to improve the performance of STS detection and classification by fusing the information from barometric pressure (BP) and inertial sensors while keeping a single sensor located at the trunk. A total number of 345 STSs were recorded from 12 post-stroke patients monitored in a semi-structured conditioned protocol. Model-based features of BP signal were combined with kinematic parameters from accelerometer and/or gyroscope and used in a logistic regression-based classifier to detect STS and then identify their types. The correct classification rate was 90.6% with full sensor (BP and inertial) configuration and 75.4% with single inertial sensor. Receiver-Operating-Characteristics analysis was carried out to characterize the robustness of the models. The results demonstrate the potential of BP sensor to improve the detection and classification of STSs when monitoring is performed unobtrusively in every-day life.

Language: en


All SafetyLit records are available for automatic download to Zotero & Mendeley