We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Manda SOM, Abdelatif N. Int. J. Environ. Res. Public Health 2017; 14(9): e14091072.


Biostatistics Unit, South African Medical Research Council, Durban 4091, South Africa.


(Copyright © 2017, MDPI: Multidisciplinary Digital Publishing Institute)






Most mortality maps in South Africa and most contried of the sub-Saharan region are static, showing aggregated count data over years or at specific years. Lack of space and temporral dynamanics in these maps may adversely impact on their use and application for vigorous public health policy decisions and interventions. This study aims at describing and modeling sub-national distributions of age-gender specific all-cause mortality and their temporal evolutions from 1997 to 2013 in South Africa. Mortality information that included year, age, gender, and municipality administrative division were obtained from Statistics South Africa for the period. Individual mortality level data were grouped by three ages groups (0-14, 15-64, and 65 and over) and gender (male, female) and aggregated at each of the 234 municipalities in the country. The six age-gender all-cause mortality rates may be related due to shared common social deprivation, health and demographic risk factors. We undertake a joint analysis of the spatial-temporal variation of the six age-gender mortality risks. This is done within a shared component spatial model construction where age-gender common and specific spatial and temporal trends are estiamted using a hierarchical Bayesian spatial model. The results show municipal and temporal differentials in mortality risk profiles between age and gender groupings. High rates were seen in 2005, especially for the 15-64 years age group for both males and females. The dynamic geographical and time distributions of subnational age-gender all-cause mortality contribute to a better understanding of the temporal evolvement and geographical variations in the relationship between demographic composition and burden of diseases in South Africa. This provides useful information for effective monitoring and evaluation of public health policies and programmes targeting mortality reduction across time and sub-populations in the country.

Language: en


Bayesian modelling; South Africa; all-cause mortality; spatial-temporal model


All SafetyLit records are available for automatic download to Zotero & Mendeley