SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ye Z, Xu Y, Lord D. Accid. Anal. Prev. 2018; 117: 340-345.

Affiliation

Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX, 77843-3136, United States.

Copyright

(Copyright © 2018, Elsevier Publishing)

DOI

10.1016/j.aap.2018.04.026

PMID

29758516

Abstract

The investigation of relationships between traffic crashes and relevant factors is important in traffic safety management. Various methods have been developed for modeling crash data. In real world scenarios, crash data often display the characteristics of over-dispersion. However, on occasions, some crash datasets have exhibited under-dispersion, especially in cases where the data are conditioned upon the mean. The commonly used models (such as the Poisson and the NB regression models) have associated limitations to cope with various degrees of dispersion. In light of this, a generalized event count (GEC) model, which can be generally used to handle over-, equi-, and under-dispersed data, is proposed in this study. This model was first applied to case studies using data from Toronto, characterized by over-dispersion, and then to crash data from railway-highway crossings in Korea, characterized with under-dispersion. The results from the GEC model were compared with those from the Negative binomial and the hyper-Poisson models. The cases studies show that the proposed model provides good performance for crash data characterized with over- and under-dispersion. Moreover, the proposed model simplifies the modeling process and the prediction of crash data.

Copyright © 2018 Elsevier Ltd. All rights reserved.


Language: en

Keywords

Crash data analysis; Generalized event count model; Under-Dispersed data

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print