We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Shabanpour R, Golshani N, Shamshiripour A, Mohammadian AK. Transp. Res. C Emerg. Technol. 2018; 93: 463-478.


(Copyright © 2018, Elsevier Publishing)






Autonomous mobility is one of the rapidly evolving aspects of smart transportation which carries the potential of reshaping both demand and supply sides of transportation systems. While understanding public opinions about autonomous vehicles (AVs) is a compelling step towards their successful implementation, still little is known about to which extent people will embrace this new technology and how the vehicle features will affect their adoption decision. This study presents a new approach for modeling the adoption behavior of fully AVs using the profile-case best-worst scaling model. In this approach, an AV profile which is characterized in terms of the main vehicle attributes and their associated levels is presented to the decision maker and he/she is asked to select the most and the least attractive attributes. Further, a binary adoption question at the end of the choice task inquires if the respondent is willing to purchase the described AV. Utilizing this method, we can recognize the difference between the intrinsic impacts of the vehicle attributes and the impact of the attribute levels on the adoption decision.

RESULTS of the analysis indicate that people are much more sensitive to the purchase price and incentive policies such as taking liability away from the "driver" in case of accidents and provision of exclusive lanes for AVs compared to other factors such as fuel efficiency, safety, or environmental friendliness. Further, it is found that millennials with higher income, those who live in the downtown area, and the majority of people who have experienced an accident in the past have greater interests in adopting this technology.

Language: en


Adoption behavior; Autonomous vehicles; Best-worst analysis; Heterogeneity in means; Stated preference survey


All SafetyLit records are available for automatic download to Zotero & Mendeley