We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article


Ludwig B, König D, Kapusta ND, Blüml V, Dorffner G, Vyssoki B. Eur. Psychiatry 2019; 62: 15-19.


Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.


(Copyright © 2019, Elsevier Publishing)






METHODS of suicide have received considerable attention in suicide research. The common approach to differentiate methods of suicide is the classification into "violent" versus "non-violent" method. Interestingly, since the proposition of this dichotomous differentiation, no further efforts have been made to question the validity of such a classification of suicides. This study aimed to challenge the traditional separation into "violent" and "non-violent" suicides by generating a cluster analysis with a data-driven, machine learning approach. In a retrospective analysis, data on all officially confirmed suicides (N = 77,894) in Austria between 1970 and 2016 were assessed. Based on a defined distance metric between distributions of suicides over age group and month of the year, a standard hierarchical clustering method was performed with the five most frequent suicide methods. In cluster analysis, poisoning emerged as distinct from all other methods - both in the entire sample as well as in the male subsample. Violent suicides could be further divided into sub-clusters: hanging, shooting, and drowning on the one hand and jumping on the other hand. In the female sample, two different clusters were revealed - hanging and drowning on the one hand and jumping, poisoning, and shooting on the other. Our data-driven results in this large epidemiological study confirmed the traditional dichotomization of suicide methods into "violent" and "non-violent" methods, but on closer inspection "violent methods" can be further divided into sub-clusters and a different cluster pattern could be identified for women, requiring further research to support these refined suicide phenotypes.

Copyright © 2019. Published by Elsevier Masson SAS.

Language: en


Cluster analysis; Machine-learning; Suicide; Suicide methods; Violent suicide


All SafetyLit records are available for automatic download to Zotero & Mendeley