SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
Email Signup | RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ucuz I, Ciçek AU, Ari A, Özcan ÖÖ, Aybüke Sari S. Med. Hypotheses 2020; 143: e110118.

Copyright

(Copyright © 2020, Elsevier Publishing)

DOI

10.1016/j.mehy.2020.110118

PMID

32721810

Abstract

It is a known fact that individuals who engaged in delinquent behavior in childhood are more probable to carry on similar behavior in adulthood. If the factors that lead children to involve in delinquency are defined, the risk of dragging children into crime can be detected before they are involved in crime and delinquency can be prevented with appropriate preventive rehabilitation programs, in the early period. However, given that delinquent behavior occurs under the influence of multiple conditions and factors rather than a single risk factor; the need for diagnostic tools to evaluate multiple factors together is obvious. Artificial intelligence-based clinical decision support systems have already been used in the field of psychiatry as well as many other fields of medicine. In this study, we assume that thanks to artificial intelligence-based clinical decision support systems, children and adolescents at risk can be detected before the criminal behavior occurs by addressing certain factors. In this way, we anticipate that it can provide psychiatrists and other experts in the field.

Keywords: Juvenile justice


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print