SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xie M, Qian G, Ye Q, Zhang Y, Wang M, Deng Z, Yu Y, Chen C, Li H, Li D. J. Colloid. Interface Sci. 2024; 676: 1011-1022.

Copyright

(Copyright © 2024, Elsevier Publishing)

DOI

10.1016/j.jcis.2024.07.095

PMID

39068833

Abstract

Polyimide (PI) aerogels have various applications in aerospace, national defense, military industry, and rail transit equipment. This paper reports a series of ultra-lightweight, high elasticity, high strength, low thermal conductivity, and high flame retardant rGO/PI nanocomposite aerogels prepared by the ice templating method. The effects of freezing processes (unidirectional freezing and random freezing), chemical composition, and environmental temperature (-196-200 °C) on the morphology, mechanical, and thermal properties of the aerogels were systematically studied. The results indicated that unidirectional aerogels exhibit anisotropic mechanical properties and thermal performance. Compression in the horizontal direction showed high elasticity, high fatigue resistance, and superior thermal insulation. Meanwhile, in the vertical direction, it demonstrated high strength (PI-G-9 reaching 14 MPa). After 10,000 cycles of compression in the horizontal direction (at 50 % strain), the unidirectional PI-G-5 aerogel still retains 90.32 % height retention, and 78.5 % stress retention, and exhibited a low stable energy loss coefficient (22.11 %). It also possessed a low thermal conductivity (32.8 mW m(-1) K(-1)) and demonstrated good thermal insulation performance by sustaining at 200 °C for 30 min. Interestingly, the elasticity of the aerogels was enhanced with decreasing temperatures, achieving a height recovery rate of up to 100 % when compressed in liquid nitrogen. More importantly, the rGO/PI aerogels could be utilized over a wide temperature range (-196-200 °C) and had a high limiting oxygen index (LOI) ranging from 43.3 to 48.1 %. Therefore, this work may provide a viable approach for designing thermal insulation and flame-retardant protective materials with excellent mechanical properties that are suitable for harsh environments.


Language: en

Keywords

Anisotropy; Flame resistant; High-strength; Polyimide aerogels; Superelastic; Thermal insulation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print