SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Osvalder AL, Neumann P, Lövsund P, Nordwall A. J. Biomech. 1993; 26(10): 1227-1236.

Affiliation

Department of Injury Prevention, Chalmers University of Technology, Göteborg, Sweden.

Copyright

(Copyright © 1993, Elsevier Publishing)

DOI

unavailable

PMID

8253827

Abstract

A method was developed to study the biomechanical response of the lumbar motion segment (Functional Spinal Unit, FSU) under a dynamic (transient) load in flexion. In order to inflict flexion-distraction types of injuries (lap seat-belt injuries) different load pulses were transferred to the specimen by means of a padded pendulum. The load response of the specimen was measured with a force and moment transducer. The flexion angulation and displacements were determined by means of high-speed photography. Two series of tests were made with ten specimens in each and with two different load pulses: one moderate load pulse (peak acceleration 5 g, rise time 30 ms, duration 150 ms) and one severe load pulse (peak acceleration 12 g, rise time 15 ms, duration 250 ms). The results showed that the moderate load pulse caused residual permanent deformations at a mean bending moment of 140 Nm and a mean shear force of 430 N at a mean flexion angulation of 14 degrees. The severe load pulse caused evident signs of failure of the segments at a mean bending moment of 185 Nm and a mean shear force of 600 N at a mean flexion angulation of 19 degrees. Significant correlations were found between the load response and the size of the specimen, as well as between the load response and the bone mineral content (BMC) in the two adjacent vertebrae. Comparisons with lumbar spine response to static flexion-shear loading indicated that the specimens could withstand higher bending moments before injury occurred during dynamic loading, but the deformations at injury tended to be smaller for dynamic loading.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print