SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tabak S, Collewijn H. Exp. Brain Res. 1994; 102(2): 367-378.

Affiliation

Department of Physiology I, Faculty of Medicine, Erasmus University Rotterdam, The Netherlands.

Copyright

(Copyright © 1994, Holtzbrinck Springer Nature Publishing Group)

DOI

unavailable

PMID

7705514

Abstract

High-frequency head rotations in the 2-20 Hz range and passive, unpredictable head acceleration impulses were produced by a new technique, utilizing a helmet with a torque motor oscillating a mass. Unrestrained head and eye movements were recorded using magnetic sensor coils in a homogeneous magnetic field. In order to analyze the influence of the visual system on the vestibulo-ocular reflex (VOR), we took measurements under three experimental conditions: (1) with a stationary visual target; (2) in total darkness with the subject imagining the stationary target; and (3) with a head-fixed target. The results in 15 healthy subjects were highly consistent. At 2 Hz, VOR gain was near unity; above 2 Hz, VOR gain started to decrease, but this trend reversed beyond 8 Hz, where the gain increased continuously up to 1.1-1.3 at 20 Hz. Phase lag increased with frequency, from a few deg at 2 Hz to about 45 degrees at 20 Hz. Above 2 Hz, VOR gain was not significantly different for the three experimental conditions. Head acceleration impulses produced a VOR with near-unity gain in both directions. We also tested three subjects with clinically total bilateral loss of labyrinthine functions. These labyrinthine-defective subjects showed, in comparison to the normal subjects, strikingly lower gains and much longer delays in the VOR during sinusoidal and step-like head movements. These results suggest that our new torque-driven helmet technique is effective, safe and convenient, enabling the assessment of the VOR at relatively high frequencies where both visual and mental influences are minimized.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print