SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Paddle BM. Biosens. Bioelectron. 1996; 11(11): 1079-1113.

Affiliation

DSTO, Aeronautical and Maritime Research Laboratory, Department of Defence, Melbourne, Victoria, Australia.

Copyright

(Copyright © 1996, Elsevier Publishing)

DOI

unavailable

PMID

8828162

Abstract

This review discusses current developments in biosensors for toxic materials of defence interest with particular emphasis on the biological element of such devices. A wide variety of synthetic chemicals, toxins of plant or animal origin and biological materials--including various disease micro-organisms as well as some bacterial exotoxins--have either been used as warfare agents or are perceived as having the potential to be used for that purpose. Although an enormous effort is being put into developing biosensors, relatively few analytes, especially toxic materials, can yet be measured by commercially available devices. The factors which currently mitigate against the use of enzyme, natural receptor or antibody based biosensors for unattended continuous environmental monitoring of toxic materials include the inherent instability and availability of suitable proteins and--for receptors and antibodies--the essentially irreversible nature of the binding event, which necessitates a continuous supply of reagents for sequential measurements. Assays involving antibody or DNA based biosensors are time consuming when working in a hazardous environment. Nevertheless, biosensors are capable of being used for extremely sensitive and specific on-site measurements of contamination by specific toxic materials. Methods for improving the stability, extending the range and altering the binding characteristics of sensing molecules are discussed.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print