SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wightman G, Beard J, Allison R. Forensic Sci. Int. 2010; 200(1-3): 41-49.

Affiliation

School of Contemporary Sciences, University of Abertay Dundee, Bell Street, Dundee DD5 3JS, Scotland, United Kingdom. g.wightman@abertay.ac.uk

Copyright

(Copyright © 2010, Elsevier Publishing)

DOI

10.1016/j.forsciint.2010.03.025

PMID

20413234

Abstract

Although air weapons are considerably lower in power than other firearms, there is increasing concern that serious injuries can result from their misuse. The present study was therefore carried out to improve understanding of the terminal ballistic behaviour of air rifle pellets. Pellets were fired into ballistic gel under a variety of conditions. The pellets penetrated further than anticipated from their low cross-sectional density, and Bloom number was not necessarily a good guide to gel behaviour. Pellet penetration into the gel decreased with increasing gel concentration, and appeared to be linear at higher concentrations. Pointed pellets penetrated up to 50% further than rounded pellets. Power and range affect penetration, but other factors are also important, and power alone is not a simple guide to potential penetration. Test firings were also carried out firing pellets into ballistic gel that contained sections of animal bone. Computed tomography (CT) and visual observation were employed to record the interactions. CT scanning showed potential as a tool for examining pellet damage. The bone appeared to be undamaged, but the pellets were severely deformed on impact. If the pellet strikes the bone at an angle, less energy is absorbed by the impact and the pellet fragments may ricochet and cause further damage in the gel. A tentative model is proposed for estimating the energy absorbed by the impact.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print