SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Vigny C, Socquet A, Peyrat S, Ruegg JC, Métois M, Madariaga R, Morvan S, Lancieri M, Lacassin R, Campos J, Carrizo D, Bejar-Pizarro M, Barrientos S, Armijo R, Aranda C, Valderas-Bermejo MC, Ortega I, Bondoux F, Baize S, Lyon-Caen H, Pavez A, Vilotte JP, Bevis M, Brooks B, Smalley R, Parra H, Baez JC, Blanco M, Cimbaro S, Kendrick E. Science 2011; 332(6036): 1417-1421.

Affiliation

Laboratoire de Géologie de l'ENS, UMR CNRS 8538, Paris, France.

Copyright

(Copyright © 2011, American Association for the Advancement of Science)

DOI

10.1126/science.1204132

PMID

21527673

Abstract

Large earthquakes produce crustal deformation that can be quantified by geodetic measurements, allowing for the determination of the slip distribution on the fault. We use data from Global Positioning System networks in Central Chile to infer the static deformation and the kinematics of the 2010 M(w) 8.8 Maule mega-thrust earthquake. From elastic modeling, we find a total rupture length of ~500 km where slip (up to 15 m) concentrated on two main asperities situated on both sides of the epicenter. We find that rupture reached shallow depths, probably extending up to the trench. Resolvable afterslip occurred in regions of low coseismic slip. The low-frequency hypocenter is relocated 40 km southwest of initial estimates. Rupture propagated bilaterally at ~3.1 km/s, with possible but not fully resolved velocity variations.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print