SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Subramanian B, Chato JC. J. Biomech. Eng. 1998; 120(6): 727-736.

Affiliation

University of Illinois at Urbana-Champaign, Department of Mechanical and Industrial Engineering 61801, USA.

Copyright

(Copyright © 1998, American Society of Mechanical Engineers)

DOI

unavailable

PMID

10412456

Abstract

A finite difference heat transfer model has been developed to predict the Safe Touch Temperatures (STT) for plates made of different materials. SST can be defined as the highest temperature at which no pain is felt when the surface is touched for a long enough period to allow safe handling of the equipment. The criterion used to quantify damage is the "damage function" that was originally proposed by Henriques and Moritz. There are several uncertainties present in the physiological and thermal properties of the skin that give rise to a solution range rather than a single solution. Certain simplifying assumptions are made that tend to yield solutions for STT that are toward the lower or "safe" end of the solution range. The model developed is a two-dimensional axisymmetric model in cylindrical coordinates. A finite difference scheme that uses the Alternating Direction Implicit method is used to solve the problem. It is a second-order scheme in both space and time domains. A parametric analysis of the model is performed to isolate those factors that affect the STT to the greatest extent. Data are presented for a variety of cases, which cover commonly observed ranges in material and geometric properties. It is found that the material properties, namely thermal conductivity and volumetric heat capacity, and the plate thickness ratio are the three most important parameters. These three parameters account for a range of STT from 56 degrees C-100 degrees C with thick metals at the low end and thin metals and plastics in the high range. This method represents a significant improvement over existing standard practices.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print