SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Plet J, Pedersen PK, Jensen FB, Hansen JK. Eur. J. Appl. Physiol. Occup. Physiol. 1992; 65(2): 171-177.

Affiliation

Institute of Physical Education, Odense University, Denmark.

Copyright

(Copyright © 1992, Holtzbrinck Springer Nature Publishing Group)

DOI

unavailable

PMID

1396641

Abstract

The purpose of the study was to examine the influence of oxygen-breathing on maximal oxygen uptake (VO2max) and submaximal endurance performance. Six young women and five men rode a cycle-ergometer while breathing compressed air (normoxia, NOX) or a 55% O2 in N2 mixture (hyperoxia, HOX). The VO2max increased significantly by 12% (P less than 0.01) with HOX in the women but not in the men (+4%; nonsignificant). Maximal heart rate was also increased with HOX in the women but not in the men. Endurance time during work to exhaustion at 80% of normoxic VO2max was 41% longer in HOX than in NOX (P less than 0.025) with no significant difference between the men and the women. The variation among individuals was large. The oxygen uptake and respiratory quotient were not different in the two endurance tests, but pulmonary ventilation (VE) and blood lactate concentration were lower in HOX than in NOX, especially during the latter part of the task. Plasma base deficit (BDpl) increased initially by 3.5 mmol.l-1 during HOX and then stabilized. In NOX, a continuous increase was seen and the change was more than twice as large. Relative to BDpl, VE was higher in HOX than in NOX indicating a more efficient ventilatory compensation of the metabolic acidosis. The reduced ventilatory demand and lower metabolic acidosis in HOX in combination with lower relative exercise intensity may have contributed to the longer time to exhaustion. However, the pattern of individual variation suggested that other mechanisms were also involved.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print