SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Teixeira SS, Silveira LB, da Silva FM, Marchi-Salvador DP, Silva FP, Izidoro LF, Fuly AL, Juliano MA, dos Santos CR, Murakami MT, Sampaio SV, da Silva SL, Soares AM. Arch. Toxicol. 2011; 85(10): 1219-1233.

Affiliation

Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP-USP, Ribeirão Preto, SP, Brazil.

Copyright

(Copyright © 2011, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s00204-011-0665-6

PMID

21331602

Abstract

This paper describes a biochemical and pharmacological characterization of BpirPLA(2)-I, the first acidic Asp49-PLA(2) isolated from Bothrops pirajai. BpirPLA(2)-I caused hypotension in vivo, presented phospholipolytic activity upon artificial substrates and inhibitory effects on platelet aggregation in vitro. Moreover, a synthetic peptide of BpirPLA(2)-I, comprising residues of the C-terminal region, reproduced the antiplatelet activity of the intact protein. A cDNA fragment of 366 bp encompassing the mature form of BpirPLA(2)-I was cloned by reverse transcriptase-PCR of B. pirajai venom gland total RNA. A Bayesian phylogenetic analysis indicated that BpirPLA(2)-I forms a clade with other acid Asp49-PLA(2) enzymes from the Bothrops genus, which are characterized by the high catalytic activity associated with anticoagulant or hypotensive activity or both. Comparison of the electrostatic potential (EP) on the molecular surfaces calculated from a BpirPLA(2)-I homology model and from the crystallographic models of a group of close homologues revealed that the greatest number of charge inversions occurred on the face opposite to the active site entrance, particularly in the Ca(2+) ion binding loop. This observation suggests a possible relationship between the basic or acid character of PLA(2) enzymes and the functionality of the Ca(2+) ion binding loop.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print